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Abstract

We introduce a versatile class of point processes on the
real 1ine, which are closely retated to finite-state Markov
processes. Many relevant probability distributions, moment and
correlation formulas are given in forms which are computationally
tractable. Several point processes, such &s renewal processes of
phase type, Markov-modulated Poisson processes and certain semi-
Markov point processes appear as particular cases. The
treatment of a substantial number of existing probability models
can be generalized in a systematic manner to arrival processes
of the type discussed in this paper,

Several qualitative features of point processes, such as
certain types of fluctvations, grouping, interruptions and the
inhibition of arrivals by bunch inputs can be modelled in a way

which remains computationally tractable.
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1. Introduction

While the general theory of point processes on the real

tine has seen major developments during the recent years, the
cases where analytically or algorithmically tractable results

are obtained remain intimately related to an underlying Markovian
assumption. Stochastic models which require as few as two
general renewal processes to be considered are in most cases

* intractable. Standard constructions, such as the superposition
of two renewal processes, destroy the regenerative properties to
such an extent, that an exact, non-asymptotic analysis of the

: model becomes very difficult, if not impossible.

This problem has arisen early in a variety of practical
situations. Notably in communications engineering, a variety of
techniques have been developed by which a compiicated point
process is replaced by a simpler one. The latter does not share

the complex probability structure of the former, but exhibits

g, =

certain qualitative features of it and a few lower order moments

can usually be matched by adjustment of parameters, so thit the

two processes are at least macroscopically very similar. A

s L R

survey of such techniques may be found e.g. in L. Kosten [4_.

§ In this paper, we shall discuss a versatile class of poinu.

: processes which is closely related to finite Markov processes. Its
theoretical analysis is therefore elementary and its relation to
finite systems of differential equations guarantees that, at least
for a wide range of parameter values, the resulting equations may
readily be solved numerically.

We shall give a general description of the point process in
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Section 3. It involves a very large number of parameters, but
in any given application most of these can be eliminated or
assigned simple values, depending on the qualitative features of
the point process which the user wishes to bring forth in the
model,

A crucial underlying notion is that of a probability

distribution of phase type (PH-distribution), investigated in

[8-12]. The next section reviews the definition and key properties
of PH-distributions.

2. The PH-distributions

We shall only review the continuous PH-distributions on [0,=),
bearing in mind that there is an entirely analogous development
for discrete PH-distributions, derived from the theory of finite
Markov chains. All the definitions and derivations in this paper
may therefore be modified to define a point process on the discrete
time lattice.

Consider an (m+1)-state Markov process with m transient states
and one absorbing state. Its infinitesimal generator Q is then of

the form

T T°
Q = ) (1)
0 0

where T is an mxm matrix, with T11<O, 71320' for i#j and such that
l exists. The vector T° has nonnegative entries and satisfies
Te+T°=0, where e=(1,...,1)'. A vector (a, am+]) of initial

probabilities is also given and satisfies weta .,*1, Oca  ,<1.

m+)
The probability distribution F(.) of the time till absorption

in the state m+1 is then given by




F(x)=1-aexp(Tx)e, for x20. (2)

The pair (a,T) is called a_representation of F(:) and any

probability distribution F(+) which can be so constructed is a
PH-distribution. In this paper, we may assume without loss of
generality that “m+1=0’ so that F(+) does not have a jump at 0.
We further consider the matrices T° with T;3=T; and A° with
A°=diag(a1,...,am). The Markov process with the infinitesimal

generator
Q*=T+T°A°’ (3)

is now of considerable importance. We may always assume that C*

is irreducible, if necessary after deletion of superfluous states

from the chain Q. The matrix Q* describes the Markov chain,
obtained by resetting the original chain instantaneously using
the same initial probabilities, whenever an absorption into the
state m+1 occurs.

The stationary probability vector » of Q* is obtained by
solving the equations nQ*=0, me=1. The times of absorption (and
resetting) are readily seen to form a renewal process with the
underlying probability distribution F(:). A renewa! process in
which the interrenewal times have a PH-distribution is called

a PH-renewal process [12].

We refer the reader to the cited references for the closure
properties of the class of PH-distribution. For use in the sequel,
we need the following. The mean of the distribution F(:) is
ui=-gT']g, and the probability distribution F*(x)=(ui)'16X[I-F(u)]du,

x>0, is also of phase type and its representation is (n,T).
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Moreover the stationary version of a PH-renewal process is
obtained by starting the Markov process Q* with the initial
probability vector =.

We shal?! now use the Markov chain Q* as a substratum for the
definition of the point process of interest. A transition from . |
the state 1 to the state j, which does not involve a renewal
(i.e. no visit to the "instantaneous" state m+1) will be called

an (i,j)-transition. We recall that in a Markov process,

transitions from a state to ftself are not considered, so that we
only have (i,j)-transitions for i#j. A transition from { to j,

which fnvolves a renewal, will be called an (i,j)-renewal transition.

Such transitions which, rigorously defined, go from {i to the
instantaneous state m+1 and thence to j, may go from a state to
jtself. Whenever the process is in state 1 at time t, an (1,3)-

renewal transition occurs with the elementary probability T;ajdt.

3. The Point Process

For reasons, which will be apparent in the examples of applied
interest, we shall allow each of the events in the process to be
multiple and we shall use the intuitively appealing terminology of

group arrivals. There are three different types of arrival epochs,

for which we now define appropriate notation:

a. During any sojourn time of the Markov process Q* in the
state i, 1<i<m, there are Poisson arrivals of rate Ai and
group size density {pi(k), k20}. We shall denote the
probability generating function of {pi(k)} by 01(2) and we
may assume without loss of generality that ¢i(0)=0’ for lgigm.

If there are no arrivals of the other types, the doubly




stochastic Poisson process [2] so obtained is called the

Markov-modulated Poisson process.

b. At (i,j)-renewal transitions, there are group arrivals with
probability density {rij(k), k20}. The generating function
of the density {rij(k)} is denoted by °ij(z)' for 1<i,j<m.
The matrix {013(2)} is denoted by ¢(z) and we do allow
013(0) to be positive for some (i,J).

c. At (i,j)-transitions, there are group arrivals with
probability densit) {q1j(k), k>0}. The generating function
of the density {qij(k)} is denoted by wij(z), for 1#j. We
shall find it convenient to define v11(z)-1, for Tgiem,

The matrix {wij(Z)} is denoted by ¥(z). We do allow some
of the '13(0)’ i#j, to be positive.

We now make the following independence assumptions. For every
t>0, given the path function of the Markov process Q*, the epochs
of the first type of arrivals are conditionally independent,
given the successive sojourn times and behave as a homogeneous
Poisson process on every sojourn interval. Given the times and
types of the arrival epochs up to time t, the group sizes are
conditionally independent and have the probability densities,
given above.

By N(t) and J(t), t20, we denote respectively the number of
arrivals in (0,t] and the state of the Markov process Q*. It {s
then easy to see that the process {N(t), J(t), tz0} is a Markov
process with the state space {kz0ix{1,...,m}.

The probabilities P”(v.t)-P{N(t)-v. J(t)=j|N(0)=0, 9(0)=i)

T<i,jsm, are of considerable interest. We derive a recursive




system of differential equations for the matrices P(v,t)=
{Pij(“’t)}’ for v20.

The Chapman-Kolmogorov equations for the process
{N(t), J(t), t20) may be written as

Piy(vst)ePyg(vit)(Tyy- j)+ : P1J(k t)Aypy(v-k)+ ()
m Vv m
h;} kfo P,h(k.t)rhthj(\,-k)»«hf1 kfop’“(k t)Tha f hj(»-k),
h#J

for 1¢i,j<m and v20. In matrix notation, we have

P'(v.t)'—P(v,t)A(l)+k;0P(k.t)A(L)A[R(v-k)] (5)

+kxop(k t)[ToQ(V k)}"' E P(k t)[T A’or(v k)_'.
where A(A)-diag(xl.....xm). A[g(r)]-diag(pl(r).....pm(r)}. for
t20. The matrix q(t) has entries q1j(r). for 120 and i#J, but
qii(‘)'cro’ for t20. The matrix r(r) has entries rij(t). for t20.

The symbol o denotes the Schur or entry-wise product of two

matrices.

The matrix-generating function P(z,t)= ¢ P(v,t)z", defined
v=0

for |z|<l, satisfies the differential equation

3 Blz t)=P(z,t)(-a(1)+a(2)ALe(2) 14To¥(2)+T A 0(2)), (6)
with the initial condition P(z,0)=I. It follows that

P(:,t)=exp{R(z)t}, (7}
where R(z)=a(r)al¢(z)]-a(r)+Toy(z)+T°A%ce(z).
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We see that ¥(1)=e(1)=E, where E1j=1, so thet ﬁ(l,t)aexp(Q*t),
as is to be expected. Trhe explicit expression (7) for 5(z,t)
is also the direct generalization of the formula 5(z,t)=exp[-xt(1-z)].

for the ordinary Poisson process.

A. The Mean Matrix

By differentiatfng with respect to z in (7) and setting z=1,
we obtain the matrix

d = ® .n Nl v nelav
M{t)=]=— p ot = I t I *R'(1)Q* ’ 8
(t) [“ (z )]z-l n=l nT y=Q ‘ (e (8)
where
R'(1)=4(2ey)+Toc+ToR%0p, (9)

With x=9'(1-), C=y'(1-), and Do’ (1-).

We shall fipst compute the vector g(t)-M(t)g, which plays an

important role in applications. From (8) we obtain

u(t)e ;1 £ 0" 1), (10)
n= n

and in [12] we proved that

; t" Q*"'lsftexp(Q*u)du=nt+[l-exp(0*t)](7*n-Q*)']. (11)
n=1 nl 0

where t* is any real number such that r*zm?x(-Qgi), and 1 is the

i mxm stochastic matrix with fdentical rows given by n.

It follows that
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p(t)=uret+(I-1) (r*1-0%)"'R' (1)e +

[m-exp(Q*t)](x*n-0*)"1R* (1)e, (12)

where u*=xR'(1)e.

We see that =mp(t)=u*t, and that the first two terms in (12)
give the linear asymptote of u(t), since the third term tends to
zero as t+w=, It is advisable therefore to compute the third term
separately. Denoting it by v(t), it may be evaluated by solving
the system of differential equations

v'(t)=Q¥v(t), v(0)=(n-1) (x*n-0*)"TR' (1)e. (13)

It should be emphasized that in many applications of the present
point process, the approach to steady-state is slow.

The second term in (12) will be denoted by v and is given by
ve(e*m-0%) TR (1) e-prrr e, (14)

The 1inear asymptote of EN(t)=au(t), corresponding to the
case where the PH-renewal process is an ordinary PH-renewal
process is clearly given by u*t-u*r*-]+g(r*ﬂ-0*)-‘R'(])g.

We shall now discuss the computation of the matrix M(t) and

its asymptotic behavior. It readily follows from Formula (8), that
M'(t)-M(t)Q*=exp(Q*t)R'(1), (15)
with M(0)=0, so that

M(t)=6teXD(Q*U)R'(1)eXP[Q*(t-U)]du. (16)
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Adding t*M(t)n=t*a[M(t)2]n, to both sides of Equation (15)
and evaluating the Laplace transform of both sides of the

resulting equation, we obtain
ﬂ(5)=(SI-Q*)-]R'(1)(SI+T*H-Q*)']+A[ﬂ(s)g]r*n(sl+r*u-0*)°], (37)

in which ﬂ(s)=f“e'StM(t)dt. Since we know from the theory of
0

regenerative processes, that lim t']M(t) exists, this limit may

t-)-co
be found by evaluating Tim sM(s). We so obtain
s+0+
Tim t7TM(t)su*e*n(c*n-Q%) " ay*n, (18)

treo

By considering the differential equatfon obtained from (15)
for the matrix M(t)-u*nt, we obtain the constant term in the

asymptotic formula for M(t), since

im [M(t)-u*mt]=nR* (1) (v#n-0%) " p* o+~ Tnea(v)n

to+m

=R (1) (v#1-0%) " 4 (x*n-Q*) TR (1) m-2ute*" . (19)

It follows that

M(t)=nR' (1) (x*1-Q*) T4 (x*n-0*) " TR (1)m-2u**" Tneprnt+o(1), (20)

as tow,
In computing M(t) numerically, it is again advisable to modify
Equation (15) to the equation for the difference K(t) between
M(t) and its linear asymptote. We so obtain
K*(t)-K(t)Q*=exp(Q*t)R* (1)+TR" (1) (r*1-0*) " q¥-u*n

=[exp(Q*t)-n]R' (1), (21)
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where K(0) equals minus the constant term !n Formula (20).

B. The Second Moment Matrix

By differentiating twice with respect to z in Formula (7)
and setting z=1, we obtain the second factorial moment matrix

Ma(t). wnich is given by

w n-1
~1=v
M,(t)= 2 t" £ Q*VR"(1)Q*" +
2 n=1 nl v=0
> o.n n-2 v r ver n-2-v
2 t ¢ & QxR'(1)Q*R'(1)Q* .
n=2 n! v=0 r=0

The matrix Mz(t) can be discussed in an entirely analogous manner
as the matrix M(t), but the resulting expressions are much more
involved. We shall only discuss the vector p,(t)=M,(t)e, which
is needed in the computation of the variance of the number of

arrivals in (0,t).

We have
p,(t)= : t" " TRe(1)es2 £ t" "2 *"R' (1)0*"2"TR (1)
2 n=1 nl T n=2 nl r=0 -

The first term is given by
ugte+[I-exp(Q*t)](x*n-0%)"'R"(1)e,

where u§=1R“(1)g. by application of Formula (11).

In order to evaluate the second term, we notice that

® n-2
ot r Q"R(1)Q*" 2V (r¥n-Q)
. n=2 nl r=0
: N SO Y RS n-1-r
=t* £ t Q* " °R'(1)m-1x t & Q*R'(1)Q*
n=2 n! n=2 n! r=0

%‘?‘mﬁmmmm

(22)

(23)

(24)
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—H(t)+ 1 0*""ZR* (1)1

e*" TR (1) +1* 3
n=1 =

" t"
n! n=2 n!

By repeated application of Formula (i1), we obtain that

n-2 2
P @R (E N E ) (rmegr) et
rs

pog"
n=2 n!
+t(I-n)(r*n-Q*)']R'(l)n+tnR'(1)(r*n-Q*)']

#[T-exp(Q*t) T{ (x*m-0*) TR (1) (x*1-q*) 1= (e*n-0*) 2R " (1)1}

Upon substitution in Formula (23), we obtain

wp(t)=-2M(t) (x*1-0%) TR (1) grurPtleruste (25)
#2tu* (1-1) (x*1-0%) "R (1) e+2tnR ' (1) (+*1-0%) " TR' (1)e
+[1-exp(Q*t) I (c*1-0%) " 1R" (1) e-2u* (r*n-0*) 2R " (1)e
+2(e*-0*) TR (1) (x#1-0*) TR (1))

By using Formula (20), we obtain the following asymptotic
expansion for gz(t) as to+w,
gz(t)=t2u*zg+t{u§g+2u*(r*H-Q*)']R'(1)2~4u*21*']g
#2[aR* (1) (xv*1-0%) "R (1)e]e) (26)
raurorZoouenTor (ormag0) TR (1)
-2[xR' (1) (v*1-0%)"2R" (1) eJe-2u*o* ™ (v¥n-0*) TR (1)e,
s2[ (v#1-0) "'R* (1)1%e-20* T [aR" (1) (v*1-0*) " 'R* (1) ede
“2u* (*-0%) 7280 (1) g-2ur e orn-0%) TR (1)e

+0(1).

st
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We also have that

2.2

Elg(t)="* t +u§t-2u*21*']

t+2taR' (1) (+*1-0*)""TR* (1)e

-27R* (1)[T-exp(Q*t)1(v*n-0*)"2R" (1)e. (27) |
Remarks ' §

Although the preceding formulas are complicated, they are
well-suited for numerical computation, as they involve a small
number of vectors which need to be evaluated only once. 1In the
few examples where these coefficient vectors may be explicitly
evaluated, they expand into very complicated algebraic functions
of the moments of F(+) and the group size densities. We shall
illustrate this below by an example, which is of particular interest,

If one wishes to compute the vectors E](t) and Ez(t) over an
interval [0,T], it is advisable to implement a numerical method
for the solution of systems of differential equations to
evaluate the three items E](t), M(t) and gz(t) for t=na, for
successive values of n and for a step A. In this manner exp(Q*t)
needs to be evaluated only once and can be substituted in all the
formulas where it occurs.

It is also worth stressing that one can frequently avoid
computing the matrix M(t). In order e.g. to compute the variance
time curve corresponding to the ordinary PH-renewal process, we
need to evaluate au(t) and ap,(t). It is easy to see that the
formula for ap,(t) only involves the vector z(t)=aM(t), which can

be computed by solving the differentiail equations

z'(t)-2(t)Q*=aexp(Q*t)R' (1),




s R A e T MRS TR T S VAT T

- R P AR FTAGAL A TR Nl - oA 1 %o L

13

with z(0)=0. This involves far fewer arithmetic operations and
less storage then the computation of M(t).
From the mean and the second factorial moments, it 1s of

course a routine matter to compute the variances.

4. Examples

A. The Superposition of a Poisson Process and a PH-renewal Process

Kuczura [5] considers a queue whose input process is the
superposition of a Poisson and a renewal process, but in order
to obtain tractable transform solutions he imposed the raquire-
ment that the distribution of the interrenewal times have a
rational Laplace-Stieltjes transform. This is only slightly
more general than requiring the renewal process to he of phase type.

We believe that there is practical merit to consider queues,
whose arrival process is the superposition of a Poisson process
(background input) and a PH-renewal process with group arrivals
(burst inputs). Such a process corresponds to a given matrix 7
and vector a and the parameter choices Ai=x, ¢i(z)=z, for 1<icm,
¢(z)=p(z)E, ¥(z)=E, where p(z) is the probability generating
function of the group sizes in the renewal arrival process.

For this case, we shall evaluate the coefficient vectors
which appear in the formulas for u,(t) and u,(t). We do not
recommend that these explicit formulas be used in numerical
computations, but we use them to illustrate the complicated
dependence of these coefficient vectors on the moments of F(+) and
the group size density. By particularizing further to the case
of an ordinary PH-renewal process, we shall also be able to check

our computations against known formulas for the asymptotic
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variance of a renewal process.

We obtain the particuiar formulas:

R'(])a)‘l"'“]Tvo’ n]zp'(])’
R"(1)=n,T°A°, ny=p" (1),
R'(])_E_=7\_e__+n]l°, R"(l)_efnzlo
Iﬁ‘(i)=11+n]ui°1g, 33"(1)=n2u{']g
u§=k+n]ui'1, u§=n2ui'

(28)

The proof of the following three formulas requires some interesting

algebraic manipulations for PH-distributions.

formulas is proved below and the other two follow by similar

calculations.

(vo1-0%) " 11omui 11 Te

-1 -]
1|'T -u]

g(r*H-Q")']=

(r*n-Q*) 17" =772

AT TRt

In order to prove (29a), denote the left hand side by u and

write
(t*n-T-T°A°)u=T®,
or
t(nu)e-Tu-(qu)1°=T°,
which leads to
ust*(au) T e+ (1+au)e,

since -}

in the preceding equation leads to 3g=ui']r*°].

The first of these

(29a)

(29b)

(29¢)

(30)

T%=-e. Recalling that u1=-gI']g, premultiplication by a
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e is the mean of F*(x)=ui']fx[l-F(u)]du
0

we readily obtain that _I-]QF-%véui-].

in (30) then yields that

Noting that -xT~

Premultiplication by n

1+gg=ui-](t*']+%uéui-])»

and Formula (29a) follows upon substitution.
Routine, but tedious calculations now yield the following
explicit expressions for coefficient vectors appearing in

Formula (25).

1 1.1

(ee1-0%) "R (Dgmngui T T es Do e ug T (e T dusua M) e,

w(t)= (e yud " tengut L 1-exp(@¥t) 177 e,

M(E)(e*m-0*) TR (V) emnyui TM(E)T e

[XT*']+n]ui'1(t*']+%uéui-])]a(t).

(I-n)(r*H-Q*).]R'(])EF"]"i-lT']3f3"1"2“1 &

IR (1) (e*n-0*)"'R* (1)e =

{(k+n]ui'])(Ar*']+n]ui']r*']+%n]uéu{

2

nfu] ]-%An]uéu{' le,

(e+m-0%) " R* (V) emngui T T ern g T e Tl e,

(I*H-Q*)'ZR'(1)QF[AT*'2+n]ui']T*'](r*-]+%méu{'])]S

(31a)

(31b)

- (31¢)

(31d)

(31e)

(317)

(319)




- e e - - - . - e - “ . . B

g

2
[(rrn-00) TR (1)1 %= (aer Tanug Toe Tegmpugui=?) e
+2n1ui-][-T'zg—%véui']T°]g |
(gugni e Ty g g e, (31h)

Substitution into Formula (¢5) does not produce any sub-
stantial cancellation of terms, other than that resulting from
[I-exp(Q*t)]e=0. 1In order to check on the accuracy of our
derivations however, we substituted the expressions (31) into the

formula for mu,(t) and obtained

2
Elz(t)=(k+n1u{'1) t2+(n2u{']+n$uéui'3-2n$ui'1)t

Rl RTINS T (32)

If one sets n; I, n2=0. and evaluates the variance Vare[N(t)]

of N(t) for the stationary process, one obtains in terms of the

central moments of F(.) that

a2 .73y 1.1 4 41 -3
Vare[N(t)]-(A"‘O’ u-l )t+6+2’0 U] ‘3“3““ ’ (33)

which is in agreement with Formula (18), p. 58 of Cox [1].

B. The Markov-Modulated Poisson Process

If ¢(z)=v(z)=E, and ¢i(z)=z, for 1gism, we obtain an
interesting example of a doubly stochastic Poisson process, which
was used as an arrival process in the queueing models, discussed

in [6], [13], [14] and [15]. Since in this case R'(1)=a(1),

and R"(1)=0, some minor simplifications occur in tvhe general

moment formulas.
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The Markov-modulated Poisson process can be used to model a
large variety of qualitative phenomena, such as interruptions in
arrivals, rush-hour behavior and others. Heffes [3], in a
telephone engineering model, considered the interrupted Poisson
process in which arrivals occur on alternating, exponentially

distributed intervals. This corresponds to the particular choice

T = ’ lo = ’ &'(]so):

Ay®h, ¢4(2)=z, 2,=0, ¢,(2z) arbitrary, ¢(z)=¥(z)= L

A more general, useful situation ar.ses if we define an
interrupted Poisson process on an alternating renewal process of
phase type. Let the odd-and-even-numbered intervals have PH-
distributions F](-) and Fz(-) with irreducible representations
(g], T]) and (gz, TZ) of dimensions my and m, respectively, then

a natural extension of the preceding example is given by

T, T e
T = ’ Io" ’ ﬁ‘(_ﬁ]:g)’
o
o T, I
Ai-"k, Ai=0,
¢4(z)=z, for 1sism,, ¢,(z) arbitrary for my+1sismy +m,,
o(z)=v(z)=E, with Eg =1,

In the expression for T, the square matrices T] and T2 are
of orders m, and m, respectively, A§=A(32) and T§ is an myxm,

matrix, with all its columns equal to T7. It is easily verified

B
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that the matrix Q*, which is given
ALY
Ay Ty

Qx

has the stationary probability vector

Dnigaug) oy vy lageg) gl
where u& is the mean of Fk(-). k=1,2, and LI is given by
n (T #TRAR)=0, x e=1, for k=1,2.

Alternating periods of rush and slack arrivals can of course

be modelled by other choices of the Ai-parameters.

C. The Markov Arrival Process

If A=0, ¢(z2)=2E, and wij(z)=z. for i#J, we obtain a
particular semi-Markovian arrival process in which the underlying
Markov renewal process is a Markov process.

By suitably enlarging the state space, any semi-Markov

arrival process in which the sojourn time distributions are of

phase type can in fact be obtained as a particular case of our
process by allowing arrivals at some (fi,j)-transitions and not at
others. This is however rarely of practical interest in view of
the high order of the Q*-matrix, usually required by this

construction.

D. Arrivals Inhibited or Stimulated by Renewals

Prof. E. Gelenbe renewed our interest in the point processes,
discussed here, by describing practical queueing situations in

which e.g. substantial group arrivals at renewal epochs inhibit

e, . -
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background arrivals for a certain length of time after their
arrival. Although there are a variety of ways of modelling input
sequences of this type, it is not easy to do so in an analytically
or computationally tractable way. We can easily choose particular
cases of the present point process which can serve as tractable

qualitative models for such arrival streams.

A PH-distribution will be called progressive, if it has a

representation (a,T) in which the matrix T is upper triangular.

It is easy to see that a PH-distribution is progressive if and only
if it is a finite mixture of generalized Erlang distributions.
Every path function of the Markov process Q is then non-decreasing.
We can allow e.g. group arrivals at some or all of the (i1,j)-
renewdl transitions and select the Ai-parameters of the states
close to renewals so as to model the inhibitory effect of the

group arrivals.

Although the statistical problems, related to fitting such
models to observational data, require much further research, the
ease with which the mean and variance time curves can be
computed for the point processes discussed here should be useful
in fitting sample mean and variance curves. Computer graphical
methods appear to be very promising for such purpose and are

currently being investigated.

5. The Covariance Structure

In this section we consider the covariance of the random
variables N(t) and N(t+t]+t‘)-N(t+t]), where t>0, t,20, t'>0, for
the stationary version of the underlying PH-renewal process. For

the non-stationary version similar, but more complicated formulas,

SR, B s
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are routinely obtained.

We readily see that

N(t) N{t+t

]+t')-N(t+t])
E{z, z, I[J(t+t]+t')=j]|J(0)=i},

is given by the (i,j)-entry of the matrix
exp[R(zy)tIexp(Q*t,)exp[R(z,)t'].

Differentiating with respect to 2 and with respect to 25y
setting z]=zz=1, we readily see that the covariance of N(t) and

N(t+t]+t')-N(t+t]) is given in the stationary case by
Cov-IM(t)exp(Q*t])M(t‘)g-u*tt‘. (34)

Since M(t')e=u(t') is given by Formula (12) and

AM(t)eurta-urer ™ oenR ! (1) (-0*) "
+R' (1)[n-exp(Q¥t) ] (*n-0*)"", (35)

and using the fact that (r*n-Q*)'] and exp{Q*u) commute, we obtain

after routine calculations that

CovarR'(1)[I-exp(Q*t)Jexp(Q*t;)[I-exp(Q*t')I(v*n-0*) %R" (1)e. (36)

For the particular case of Example A, we obtain by applying
Formula (31g) that

Coveuntui“Zall-exp(Q*t) exp(Q¥t, ) 1-exp(a*t') T Zerguzui~ T le). (37)

LA

We see that the numerical computation of the covariance is again

reduced to the solution of simple systems of differential equations.
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